- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Good, Benjamin H (2)
-
Huang, Kerwyn Casey (2)
-
Wong, Daniel PGH (2)
-
Bottacini, Francesca (1)
-
Buie, Cullen R (1)
-
Carlson, Hans K (1)
-
Cava, Felipe (1)
-
Culver, Rebecca (1)
-
Dapa, Tanja (1)
-
DeFelice, Brian (1)
-
Deutschbauer, Adam M (1)
-
Friess, Lisa (1)
-
Garcia, Paulo A (1)
-
Guiberson, Emma (1)
-
Higginbottom, Steven (1)
-
Huang, Po-Hsun (1)
-
Knapp, Benjamin D (1)
-
Mattiello, Samara Paula (1)
-
Nieckarz, Marta (1)
-
Sanchez, Juan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Dapa, Tanja; Wong, Daniel PGH; Vasquez, Kimberly S; Xavier, Karina B; Huang, Kerwyn Casey; Good, Benjamin H (, Current Opinion in Microbiology)
An official website of the United States government
